Журнал радиолюбитель простые вч частотомеры. Малогабаритный частотомер. Компьютер проверяет микросхемы

Является двух диапазонным частотомером (измерителем частоты ) с ЖКИ и может быть использовано в качестве узла радиолюбительской аппаратуры либо отдельного устройства. Частотомер имеет ряд полезных возможностей:

  • установка смещения;
  • автоматическое/фиксированное нормирование частоты;
  • установка уровня срабатывания;
  • калибровка;
  • настройка контрастности ЖКИ.

Основные технические характеристики

  • Напряжение питания 8 В … 15 В
  • Потребляемый ток на 12В, не более, мА 90

Низкочастотный вход

  • Диапазон входных напряжений 0 B … 5 В
  • Частота сигнала 1,1 Гц... 32 МГц (1,1 Гц... 12 МГц без применения дополнительных схем на входе)

Высокочастотный вход

  • Тип входа 50 Ом
  • Диапазон входных напряжений 0,0 B … 1,5 B
  • Частота сигнала 0,5 МГц... 960 МГц (100 МГц... 960 МГц без применения дополнительных схем на входе)

Относительная погрешность измерения, не более 0,001

Рабочая температура окружающей среды, град Цельсия плюс 10 … плюс 55

Схема электрическая принципиальная приведена на рис.1

Описание работы узлов частотомера

Система на кристалле

Основным элементом частотомера является микросхема IC4 - система на кристалле CY8C27543-24AXI фирмы Cypress. Благодаря наличию специализированных встроенных цифровых и аналоговых блоков данная микросхема легко реализует следующие функции:

  • вычисление частоты импульсов, поступающих на входы P2.2 (НЧ канал) и P2.0 (ВЧ канал);
  • выдача опорных напряжений для компаратора (P0.5 – ВЧ канал, P0.3 – НЧ канал);
  • обработка по прерыванию нажатий на кнопки управления K1…K3;
  • управление ЖКИ индикатором.

Тактирование микросхемы обеспечивается встроенным высокочастотным генератором, использующим в качестве опоры внешний часовой кварц ZQ1 типа KX-327ST 32.768 kHz.

Питание

Питание устройства подается через разъем DJK-02A XS3, при этом диод SM4002 VD1 защищает от переполюсовки. Микросхема линейного стабилизатора MC7805CDT IC3 понижает входное напряжение до рабочего 5В, а керамические и электролитические конденсаторы обеспечивают необходимую фильтрацию для надежной работы устройства.

Компаратор

Компаратор MAX962EUA IC2 обеспечивает необходимые характеристики фронтов сигналов для правильной обработки их системой на кристалле. При этом для каждого входного канала используется собственное опорное напряжение, настроить которое можно только для НЧ канала. Для ВЧ канала опорное напряжение фиксировано и определяется характеристиками микросхемы делителя. Дополнительно на входе НЧ канала применена схема защиты на основе резистора R1 и сборки диодов Шоттки BAT54S VD2.

Высокочастотный делитель

Для вычисления частоты сигнала поступающего на ВЧ канал применена микросхема MC12080D IC1 - делитель с коэффициентом 80. Входное сопротивление ВЧ входа стандартно и равно 50 Ом.

ЖКИ

Жидкокристаллический индикатор WH1602D-TML-CT LCD в двустрочном режиме отображает различную информацию: входные частоты каналов и меню, в котором возможно настроить и откалибровать устройство в случае необходимости.

При подаче напряжения питания автоматически включается подсветка, что позволяет работать с устройством даже при плохой освещенности.

Математическое обоснование

При разработке частотомера применены следующие методы вычисления частоты:

  • подсчет опорных импульсов высокой частоты за период входного сигнала для измерения низкочастотных сигналов;
  • подсчет количества периодов входного сигнала за опорный промежуток времени для измерения высокочастотных сигналов.

В первом случае относительная погрешность измерений равна (x/n) (зеленый график), где x-входная частота, а n = 24000000 (опорная частота). Во втором – (k/x) (красный график), где k = 3 (обновлений в секунду), а х – входная частота.

Розовой штрихпунктирной линией показан уровень относительной погрешности равный 0,0005 (в два раза лучше заявленной).

Вертикальная голубая линия обозначает границу работы алгоритма вычисления частоты. Абсцисса этой линии – примерно 8485 Гц.

При проведении расчетов не учитывается относительная погрешность внутреннего генератора системы на кристалле ввиду того, что она равна погрешности применяемого часового кварца и составляет десятки миллионных долей.

Частотомер измеряет частоту входного сигнала в диапазоне 10 Гц…50МГц, со временем счета 0,1 и 1 с, отклонение частоты 10МГц(относительно зафиксированного значения), а так же осуществляет счет импульсов с отображением интервала счета (до99с). Входное сопротивление составляет 50…100 Ом на частоте 50МГц и увеличивается до нескольких кОм на НЧ диапазона.

Основу частотомера составляет микроконтроллер PIC12F629 (DD1). Входной усилитель собран на VT1. Для отображения информации применен цифровой индикатор НТ1610 со встроенным контроллером. Питание частотомера осуществляется от батареи 8…9В.
Напряжение питания на микроконтроллер стабилизировано интегральным стабилизатором DA1. На индикатор напряжение питания поступает с движка подстроечного резистора R5 и составляет 1,4…1,6В.
При включении питания микроконтроллер выполняет программу измерения со временем счета 0,1с. При кратковременном нажатии кнопки SB1 значение частоты фиксируется и микроконтроллер измеряет отклонение частоты от зафиксированного значения. При повторном нажатии SB1 частотомер возвращается в исходное состояние. Для перехода в режим измерения частоты и ее отклонения с временем счета 1 с следует нажать на SB1 и удерживать ее не менее 2 с. Еще одно нажатие на SB1 переводит частотомер в режим счета импульсов. В этом режиме при нажатии кнопки происходят запуск, остановка и обнуление счетчика и индикатора времени измерения.

Частота и ее отклонение оттображаются на табло частотомера в герцах, в интервале 0,1 с индикатор выглядит как 1FXXXXXXXX или 1F|_XXXXXXX (1F-XXXXXXX)для отклонения частоты, а знак показывает на ее увеличение или уменьшение. |_ — так как в индикаторе не предусмотрен +, то он отображается как |_.

В режиме 1 с первый знак индикатора заменяется с 1 на 2 — 2FXXXXXXXX.

В режиме счета импульсов на индикаторе будет — CCУУУУУУ, где СС — время счета а УУУУУУУУ- число импульсов. По окончании счета состояние индикаторов фиксируется.

Детали:

  • подстроечный резистор СП3-19
  • постоянные резисторы С2-23 или МЛТ
  • подстроечный конденсатор КТ4-25
  • микросхему LM2931Z-5.0 можно заменить на 78L05
  • микроконтроллер можно запрограммировать программой Pony Prog, IC Prog.

Настройка:

  • подстраиваем частоту совпадения индикатора и эталонного частотомера с помощью С5
  • R1 — чувствительность по входному сигналу.

Войти с помощью:

Случайные статьи

  • 06.10.2014

    Предусилитель выполнен на одной ИМС К1401УД2А, которая содержит 4-е ОУ, в стерео варианте по 2-а ОУ на канал. Общий коэффициент передачи(усиления) равен 5-и, максимальное входное напряжение 0,5В, номинальное 0,2В. Входное сопротивление 100кОм. Диапазон частот 30…20000Гц при неравномерности АЧХ 2 дБ. Регулировка АЧХ 6-и полосная с центральными частотами 60, 200, 1000, …

  • 26.09.2014

    Принципиальная схема генератора сигналов ЗЧ изображена на рис. Он представляет собой двухкаскадный усилитель ЗЧ, охваченный цепями положительной и отрицательной обратных связей. В первом каскаде работают транзисторы VT1 и VT2, включенные по схеме составного транзистора, во втором- транзистор VT3, включенный по схеме с общим эмиттером. Для улучшения работы генератора на низших …

  • 07.10.2015

    8-и канальное реле времени выполнено на микроконтроллере PIC16F877A и индикаторе LCD WH1602D, содержит 8 реле (12В) которые можно включать и выключать в заданное время. Управление реле осуществляется тремя кнопками, при нажатии кнопки «Установка времени» и при помощи кнопок «Уст.часов» и «Уст.мин» можно задать время включения и выключения реле (1-8), а так …

  • 04.10.2014

    На рисунке показана электрическая схема регулируемого ЭПРА для управления 26 Вт четырехвыводными компактными люминесцентными лампами (CFL) от сети 220 В с гальванически изолированным аналоговым входом управления яркостью 1…10 В. Балласт включает в себя: фильтр ЭМИ для уменьшения собственного генерируемого шума; выпрямитель и конденсатор для преобразования переменного входного напряжения в постоянное; контроллер и транзисторный …

  • 21.09.2014

    Предлагаемый автомат управления освещением обладает возможностью обнаруживать низкие уровни освещенности, что позволяет включать освещение с наступлением сумерек и выключать, как только забрезжит рассвет. Электрическая схема автомата управления показана на рисунке. Он состоит из управляемого генератора импульсов на однопереходном транзисторе VT2 и электронных ключей на тиристорах VS1 и VS2. Управление генератором …

Большинство любительских частотомеров строятся по типовой схеме, когда есть время счета в течении которого производится подсчет периодов за это время (при этом индикаторы обычно погашены), затем следует время индикации - время в течении которого вход декадного счетчика заблокирован и светятся индикаторы, затем следует погасание индикаторов и обнуление счетчика, и процесс циклически повторяется. Несмотря на свою распространенность такой способ измерения частоты имеет существенные недостатки.

Во-первых , весь процесс измерения, по времени, в большей степени состоит из времени счета и времени индикации, что при измерении низких частот может в сумме составлять 2-3 секунды.
Во-вторых , индикаторы постоянно мигают, что тоже не очень приятно.

Предлагаемая конструкция отличается, практически отсутствием времени индикации - индикаторы горят постоянно, но после каждого времени счета меняют свои показания.

В результате весь процесс измерения длится чуть больше одной секунды. Достигнуто это благодаря введению в каждую декаду декадного счетчика по одной четырехразрядной ячейки память. В которой до завершения цикла измерения хранится информация о результате измерения в предыдущем цикле, затем она сменяется.

Принципиальная схема показана на рисунке. Декадный счетчик шестиразрядный на D1-D18. В качестве счетчиков и ячеек памяти используются одинаковые микросхемы К561ИЕ14, в первом случае включенные в режиме счета, а во втором - в режиме предустановки.

Характеристики частотомера:

1. Число разрядов индикации..................... 6
2. Диапазон измеряемых частот........ 1 Гц-1Мгц.
3. Время цикла измерения................. 1,2 сек.
4. Чувствительность входа.............. 250 мВ.
5. Входное сопротивление................ 10 ком.

Рассмотрим работу на примере младшего разряда. Устройство управления выполнено на D20 и D19. Для его функционирования на вход С D20 должны поступать импульсы частотой 8 Гц. В исходном состоянии D20 и D1 находятся в нулевом состоянии. Как только D20 переходит в состояние "1" триггер D19.3 D19.4 устанавливается в нулевое состояние и открывает открывает элемент D19.1, через который на вход С D1 поступают импульсы от входного формирователя на VT1 и VT2.

Это продолжается до тех пор, пока D20 не досчитает до "9". В этот момент триггер устанавливается в единичное состояние и закрывает элемент D19.1. Импульсы на вход D1 больше не поступают. В это же время положительный импульс с вывода 11 D20 поступает на вывод 1 D2 и включает режим предустановки счетчика D2. В результате код с выходов D1 "копируется" на выходы D2, и будет там оставаться неизменным до второго поступления импульса на этот вывод.

Затем, спустя очень небольшое время (время зарядки С1 через R43) счетчик D1 устанавливается в нулевое состояние. Как только D20 снова вернется в состояние "1" процесс повториться.

Таким образом сокращается более чем вдвое время всего измерительного процесса и исключаются мигания светодиодных индикаторов.

Для получения частоты 8 гц, необходимой для работы у-тройства управления, служит мультивибратор на микросхеме ТТЛ - D21 - К155ЛАЗ, частота которого (8 мгц) стабилизирована кварцевым резонатором, затем следует ТТЛ делитель на 10 - D22 - К155ИЕ2 и еще пять десятичных делителей на микросхемах D23-D27 - К561ИЕ8. Применение микросхем ТТЛ вызвано тем, что серия К561 плохо работает на частотах более 3 мгц. Возможно применение более распространенного резонатора на 4 мгц, но для этого нужно один из счетчиков D22-D27 включить по схеме деления на пять.

Все микросхемы частотомера смонтированы на одной макетной печатной плате размерами 240X160мм с разводкой только по цепям питания и площадками под каждый вывод микросхемы (такие платы несколько лет назад имелись в широкой продаже и даже высылались наложенным платежом). Все остальные соединения выполнены монтажным проводом МГТФ 0,12 в соответствии со схемой.

Если такая неприятность имеется нужно на выходе переноса "Р0" соответствующего "волосатого" счетчика поставить между этим выходом и общим проводом конденсатор типа КМ на 10-56 пф, подобрав его емкость эксперементально. При этом "волосатость" исчезнет либо совсем, либо её уровень не будет доставать до единичного порога. Крайне редко попадаются микросхемы К561ИЕ14 с "волосами" даже на выводах 6, 11, 14 и 2. Бороться с неприятностью можно таким же способом, но лучше такие микросхемы по возможности не использовать.

Тоже самое может потребоваться если счетчики D23-D27 будут делить неправильно (на выходе не 8 гц). Здесь нужно ставить конденсатор между выводом 12 и общим проводом. Источник питания - стабилизированный на напряжение 5В. Семисегментные светодиодные индикаторы могут быть любого типа, важно чтобы с общим анодом.

Частотомер предназначен для измерения частот в пределах от 1 Гц до 50 МГц. В основном используется доступная элементная база. Особенность схемы частотомера в том, что в нем используются как микросхемы ТТЛ, так и КМОП логики. Индикация - восьмиразрядная. Частотомер работает по быстрой схеме, то есть, нет затянутого периода индикации. Каждую секунду показания индикатора обновляются. Нет никаких переключателей или регуляторов, - только входное гнездо и выключатель питания.

Схема входного усилителя-формирователя заимствована из Л.1. Чувствительность усилителя 0.1V, максимальное входное напряжение 30V. Входное сопротивление 10 kOm. На транзисторе VT1 выполнен змиттерный повторитель, повышающий входное сопротивление частотомера. Усилитель - формирователь собран на микросхеме D1, - К555ЛА8.

У этой микросхемы выходы выполнены по схеме с открытым коллектором, поэтому требуются нагрузочные резисторы R7, R8, R11. На режим усиления элемент D1.1 выводят подачей отрицательного смещения через резисторы R4-R5 (устанавливают при налаживании). На элементах D1.2 и D1.3 выполнен триггер Шмитта, который можно блокировать подачей логического нуля на вывод 9.

С выхода триггера Шмитта сформированные логические импульсы поступают на измерительный восьмидекадный счетчик на D4-D11. Счетчик выполнен на ТТЛ-микросхемах К555 ИЕ2, включенных в режим десятичного счета.

Выходные коды поступают на дешифраторы на микросхемах D12-D19. Дешифраторы выполнены на КМОП-микросхемах К176ИД2. Согласование по уровням между ТТЛ и КМОП достигается тем, что все микросхемы питаются напряжением 5V. А низкое быстродействие дешифраторов К176ИД2 на работу схемы не оказывает никакого влияния, поскольку во время счета входы дешифраторов закрыты, и открываются только после остановки счетчиков D4-D11, то есть, после окончания периода измерения. Резисторы R16-R47 исключают перегрузку входов дешифраторов высокочастотным напряжением, которое может быть при измерении высокой частоты.

Информация отображается на восьмиразрядном индикаторе, составленном из восьми одиночных семисегментных индикаторов типа АЛС333 (такие же как более популярные АЛС324, но цифры больше).

Схема управления сделана на многофункциональной микросхеме D2 (К176ИЕ12) и десятичном счетчике D3 (К561ИЕ8). Задача этой схемы в формировании измерительного интервала и импульсов записи информации в триггеры дешифраторов, а так же импульса обнуления счетчиков.

Перед разработкой данной схемы автор просмотрел множество радиолюбительских разработок «быстрых» частотомеров, опубликованных в различных радиолюбительских журналах, и обнаружил одно часто встречающееся схемное решение, когда обнуление счетчиков и запись информации в регистры или дешифраторы производится коротким импульсов, формируемым по фронту импульса опорной частоты при помощи обычной RC-цепочки.

На первый взгляд все правильно, - через каждую секунду, например, формируется этот импульс и счетчики обнуляются. Но проблема в том, что этот импульс имеет определенную длительность, и во время действия этого импульса измерительный счетчик заблокирован. А измерительный период уже начался.

Поэтому, все частотомеры, построенные по такой схеме, занижают показания на некоторую величину, зависящую от длительности этого импульса. Причем, величина эта нестабильна, так как длительность импульса, вносящего погрешность зависит от параметров RC-цепи, его формирующей.

Возможно, для низкочастотного частотомера эта погрешность не имеет существенного значения, но на показаниях частотомера, измеряющего частоту более 1 МГц это отражается серьезно.

А теперь рассмотрим схему узла управления моего частотомера. Микросхема D2 (К176 ИЕ12) состоит из кварцевого генератора и набора счетчиков. В типовом включении генератор вырабает частоту 32768 Гц, которая, для получения частоты 1 Гц делится двоичным счетчиком на 32768 (2й).

Свойство двоичного счетчика в том. что его выходные импульсы, снятые с одного из выходов, всегда симметричны. То есть, так как на выходе D-триггера, который часто используют в схемах управления частотомеров. То есть, при выходной частоте 1 Гц будут два равных полупериода длительностью по 0,5 секунды.

Кроме того выход счетчика этой микросхемы связан с входом обнуления (R) логической функцией «ИЛИ-НЕ», поэтому, в то время когда на вход R подается единица, на выходе устанавливается ноль, но сразу же после того как сигнал обнуления снимается (на входе R - ноль), на выходе возникает логическая единица, и ровно через 0,5 секунды снова возникает ноль.

Это свойство микросхемы К176ИЕ12 позволяет сделать относительно несложную схему управления, работающую без вышеуказанных погрешностей. Но для этого нам нужно, что бы на выходе микросхемы была частота не 1 Гц, а 0,5 Гц. Получить такую частоту можно, если вместо отечественного кварцевого резонатора на 32768 Гц использовать резонатор на частоту 16384 Гц от импортного карманного цифрового будильника. Теперь, на выводе 4 D2 будут симметричные импульсы 0,5 Гц. А на выводе 14 - 16384 Гц

В любой радиолюбительской лаборатории просто необходим прибор для измерения частоты, который позволит в разработке, конструировании, производстве, изготовлении, ремонте, регулировке и настройке различных электронных устройств.

Малогабаритный частотомер

Приведена схема малогабаритного частотомера среднего класса точности, удовлетворяющего большинство потребностей радиолюбителя, состоит из небольшого количества деталей, сконструирован в виде щупа, что очень необычно для частотомера и удобно.

О напряжении питания микросхем DD6-DD10, DD2.

Чертеж возможного варианта печатной платы малогабаритного частотомера Пузырькова.

Портативный частотомер

В любой радиолюбительской лаборатории просто необходим прибор для измерения частоты. Что необычно, в конструкции этого частотомера предусмотрена возможность слухового контроля измеряемой частоты с помощью пьезоэлектрического излучателя, а так же есть сервис самодиагностики исправного состояния.

Чертеж возможного варианта печатной платы портативного частотомера Токарева.

Доработанный вариант частотомера, в результате чего он превратился в измеритель емкости от 50 пФ до 5 мкФ.

Предварительный делитель частоты

Электронные частотомеры, собранные на широко-распространенных микросхемах структуры КМОП при всех своих преимуществах (простота схема-построения, малое энергопотребление, малые массо-габаритные свойства) имеют один существенный недостаток: низкая верхняя граница измерения частоты (несколько мегагерц), что сильно ограничивает их область применения. Но для этих целей совсем необязательно обзаводиться высокочастотным прибором. Можно адаптировать имеющийся радиолюбительский частотомер, предварительно уменьшив частоту входного сигнала в какое-то заведомо известное число раз, тем самым подняв граничную частоту прибора до 250 МГц. Описываемое устройство можно так же использовать совместно с осциллографом для этих же целей.


 
Статьи по теме:
Как защитить Wi-Fi роутер от взлома
19.10.16 63 380 0 Почему широта души может стоить вам денег Евгений не поставил пароль на вайфай в своей квартире. Зачем заморачиваться? Пароль можно забыть. А то, что соседи могут пользоваться, - не жалко, всё равно интернет безлимитный. Так думает
Перевод жесткого диска из gpt в mbr
В последнее время мы часто стали сталкиваться с переводом диска из GPT в MBR. Это связано с выходом Windows 8, и в итоге, тот кто покупает ноутбук с Windows 8 , поработав на ней в течении недели, просят установить Windows 7 . Согласно мировой статистике,
Несколько способов подключения ноутбука к телевизору Соединение ноутбука и телевизора через vga
Может быть несколько причин для использования телевизора как дополнительного монитора. Самые распространенные — это просмотр фильмов или фотографий в хорошем качестве или же использование ТВ как игрового монитора. Существует несколько способов того, как п
Как надо установить windows 7
Привет! Сегодня я буду писать о самом святом, что может быть в компьютерном деле, это о том, как установить Windows 7 . Я думаю, что у всех хоть раз была такая проблема как “слетел Windows”, а переустановить его могут только специалисты и взять с Вас не м